
~ I F ' I C A T I O N OF ADA ='IS FOR REUSE

Gregory A. H e n * ,
General DymiCs, lkta Systms Division, San Diego,CA

S.D. Sgaulding, General Qmics, Eats Systans Division, San Diego, CA

Gl-i Edgar, Gemral Dymics, Data Systems Division, San Diego, CA

* Curenfly anplcyed Qy the Software Engimering Inst i tute ,
Carnqi.e-&llon UniverSiQ, Pittsbur&,

J nt r odu ct ion

OIle a€ the claims ma& by propnents of Ada is tha t Ada software i s
highly reusable. The f a c t t h a t specif icat ions are ampiled and
accessible would make reusability seen easily acfiiwahle. However,
s c e c i f i c a t i o n s s i v e on ly a l imi ted amount aE information a b u t a
pkkage; moreover-, a s p d f i c a t i o n cannot help deternine whether a
p c k a g e %worked", or h w w e l l it worked.

This problem has led t o t he concept of "certifying" Ada p r t s for
reuse; t h a t is, determining the worthimss of a p r t as a reusable
component. This p p r adiiresses issues that are critical t o reuse:
the &aracter izat ion of p r t performance, design f o r reuse, and
correct u t i l i z a t i o n of prts. %e p p r w i l l then address current
areas of study bene f i c i a l i n the developnent of a c e r t i f i c a t i o n
process.

E.1.2.1

I. a!€-

Ada has two features which support reusabi l i ty: specificaticm
aompdlation and the ab i l i t y t o Qclare ins t an t i a t ions of generic
units. Ada specifications allw a p r t ' s interfaces to be defirred,
but are not sufficient for Mining reuse. It is important t o have
information about a p a r t ' s performance i n a reuse operation to
determine amplltational requirements, accuracy a€ cdlculations, etc.

Performance is mt sanething that is eas i ly quantified; however,
attributes associated w i t h performance are *finable. A pr t ' s
performance is defimhle & its behavior, or intended fmc t ion , and
t h e computational resources it extracts from the system when
executing. mese a t t r ibu te s are d i r e c t l y related, and not
independent. They m u s t be considered i n the scope a€ both mrmal
proaessing and exception handling.

Ihe explicit separation of -#ion handling and normal processing
i s es sen t i a l for modularizaticm. Without exceptions, mstedf l ags
are required fo r error recovery management. This leads t o the
intermingling of e r ror (i. e. exceptions) and normal pcooessing,
which leads to umraMgeahle mde. Ada provides fo r the separation
of except im handling and mmal wooessing, and this aeprat ion is
mandiatary for pr t s reuse.

Exception handling oonsists of three steps: exception detection,
c o r r e c t i o n , and recovery. These steps should be handled a t
different places i n a software system. The exceptions t h a t are
raised, and t h e method of handling those exceptions, are not
oontaimd i n a pickage specification. This irdarmation is essential
to the p r t certifioation prooess.

Hcrw exceptions are handled determines the behavior of an Ada part
and a f f e c t s the performance of t h a t part. The de tec t ion ,
correction, and reawery @~ilosophy of a system has direct bearing
on the computational requirenents of that q s t e m , as &es frequency
of excepticm. Subjects such as recovery vs. restart and process
s y n c h r o n i z a t i o n m u s t be a d d r e s s e d . Exception handl ing
standardization could be an important factor i n the c e r t i f i c a t i o n
prooess.

Generic programing seems t o provide a logical approach to the
certif ication of reusable software. Hwever, some obstacles t o
r e u s a b i l i t y , s u c h as e x c e p t i o n h a n d l i n g , s t i l l e x i s t .
e c i f i c a t i a n s for generics give m more infomation mncerning the
b e h a v i o r or per fo rmance of t h e cor responding body than
specifications of pckages, sukprograns, or tasks. Since Ada does
n o t a l l o w e x c e p t i o n s t o be passed as parameters f o r the
instantiation of generic parts, the use of a generic as a reusable
p a r t is somewhat constraiMd. The usual exception declaration
interfaoe between a system and a generic package is the package
specif icat ion. Thus the ident i ty and meaning of the exception is

E.1.2.2

determined by the generic package, not the host program. This
constitutes a reversdl of acceped top down design techniques.

Another way of interfacing excegtions and reusable generic parts is
t o have both the system and t h e g e n e r i c u n i t depend on a
specifactioll package of exception declarations. This technique
would be oonsistent w i t h top dDwn methodologies, but would require a
high degree of cooperation between system implementers and the
designers of reusable prts.

A t h i r d technique of except ion i n t e r f a c i n g i n v o l v e s t h e
implementation of subprograms which raise exceptions. The
subprogram would be elaborated i n t h e sys tem's d e c l a r a t i v e
env i ronmen t and p a s s e d a s a c t u a l parameters t o g e n e r i c
instantiations. *s technique solves the poblen, but a t the mst
uf efficiency, elegance, and desicp clarity.

Another factor affecting certification of reusable pr ts is the hard
timing requirenents of a part. 'Ihis infamatian is not extractable
f r an a package qecification, and varies fran qstem to wstem. In
early oomputef architectures, timing w a s a fa i r ly easily calculated
q u a n t i t y . However, m u l t i t a s k i n g so f tware systems and new
architectures which use cache, f loa t ing point accelerators, and
other features, have direct influence on timing. ~n fact, I Y) ~

pckage oonstraints such as context switch times have become as
important as pckage timing itself.

Since parts can be viewed as tree structures with many branches;
where except ion handl ing and t iming must be considered, the
characterization of a p r t ' s perfmance and its c e r t i f i c a t i o n are
i n d e e d v e r y c o m p l e x .

E.1.2.3

I1 .
The design of aoftware p r t s m u s t be done i n a aontext independent
manner; that is, no assumptions s h o u l d be made about i n p u t
mnditions. All pssible error Conditioas should be a n t i u p t e d and
treated as exceptions. !the exception handling implenentation m u s t
be explicitly docunented.

Ihe Ada mnpiler r m time default error hecking features should not
be used, except as a redpldant he&. If r m time error hecking is
turned off for speed reasons, then flaws potent ia l ly exist i n the
qsten. Therefore, error aonditims m u s t be handled & the package.
'Ihis *ilosoFhy, mfartmately, can lead to sped impacts within the
systen.

If there are time cons t ra in ts placed upon a part, then a "costw
analysis m u s t be performed on that p r t wiar to its implanentatim,
and the results of that a m l y s h mlnst be captured f o r later use. A
hierarchical f m t i o m l demnpsitim methodology, sud~ as data flow
ar Fetri mts, can be used i n the ana lys is process. As w i l l be
discussed later, expert system technology can be amied t o the
perfo~manoe d ~e moost" analysis.

It should dlso be mentioned that there exists a potentially large
nunber of specific ooding and design practices that can adversely
impact reusability a t both the gtstem and part level. Tb fully
ickntify these Factiaes and address their relative impact w i l l take
time and experience, and such a discussion is beyond the scope of
t h i s p a p e r .

E.1.2.4

Ideally, a oertified "part" should be a reusable pr t . Hwever, it
is Fobnble #at p r t s that are oonsidered t o be 100% c e r t i f i e d are
going t o be mall aegnents of a>& with limited aFplication. Ihe
proaess of aertifying large segnents of oode is extranely oomplex.

This paper has made several points amcerning the reuse of Ada
prts:

o Ada specif icat ion packages are insuf f ic ien t f a determining
reuse

o Behavior and perfmance af a part m u s t be exp l i c i t l y defined
and extractahle

o Exception handling is an imprtant factor i n both behavior and
perf mane

o Generics offer a logical appraacfi t o oertification of reusable
p r t s hut have certain oonstraints

o Hard timing requirements must be stated, and are subject t o
variations created b~ hardvare and software envirommts

o Run time hplenenta t ions must be considered as influencing a
par t ' s behavior

Artificial Intel l igence can provide sane tecfimlogy to reace the
mplexity of analysis for reuse. In particular, expert system
technology and object-oriented design can be aFplied to the problen.
Object-oriented design is a term used t o define a methodolgy of
software development i n which &ta itens i n a software systen are
defined i n terms of their attributes, as w e l l as i n terms of their
relat ionship t o other data items i n the system. Object-orientation
has led t o the Oonoept of "franes", which are used extensively i n
expert systems for knowledge representation. If software p r t s are
thought of as objects, a frame-based system can be b u i l t which
contains declarative and procedural infarmation about plrts.

The knowledge contained i n such a frame would be symbolical ly
stated, using a f m a l graranar. %e grarmrar of the frane w i l l state
the fmction of #e p r t , sucfi as nmber and types of exceptions,
real-time requirements, accuracy, etc. If a h i e r a r c h i c a l
representation is used t o describe the qirsten, attributes of parts
can be " i n h e r i t e d " f r a n other parts a t a higher level i n the
h i e ra rchy . An expert system can then be b u i l t t o compare
requirements t o information about plrts, yielding a probabalistic
measure of a p p l i c a b i l i t y of a part t o a problem. The more
informat ion a v a i l a b l e about a part, the better a measure of
a e i c a b i l i t y can be determined.

Another technology that can be applied t o reusability is that of
Arcfietyping. (1) Archetype comes f ran the l a t i n for
" f i r s t molded as a pattern; exemplary". In t h i s case, software

E.1.2.5

specialists capture software =on after it has been tested and
delivered, work w i t h users of the software qsten, and sketch out
future requirements for systems of this type . Thus, a team of
software and domain experts develops a pattern fran w h i c h future
systems can be generated. The result of an archetyped software
system is a tenplate that requires a tool to "fill in the blanks" t o
custanize the software for an application. One such tool is the
CARTS technology, offered ty General 4.mics. ArchetyFed software
overoanes all the limitations fomd w i t h Ada generics. Archetyped
part elements, acmbined w i t h a formal grarrmar, w i l l gcovide antext-
sensitive expansion of specifications in to compilable Ada source
a&.

It is the amclusion of this -per that absolute oertification is a
desirable b u t extremely d i f f icu l t t o achieve goal. Partial
certification is a more realistic goal and i s attainable w i t h
existing tecfimlogies.

mreover, i n order to L L S ~ p r t s "as is", they must be kept anall and
uncomplicated, otherwise the process of certification kccanes very
axnplex. A methodology, such as archetyping, combined w i t h the
proper tools, ciin make p r t s adaptable, r a c e aomplexity, and allow
for reuse of larger bodies of mde.

The concepts described i n t h i s paper reflect research being
performed a t General Dynamics Data Systems Division, San Diego,
California.

(1) Pnytylinski, S. "ArchetYping- A Knowledge-Baaed Ftee Paradign"
April, 1986

E.1.2.6

